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ABSTRACT

Context. Magnetohydrodynamic (MHD) solar coronal models are critical in the Sun-to-Earth model chain and the most complex and
computationally intensive component, particularly the time-evolving coronal models, typically driven by a series of time-evolving
photospheric magnetograms. There is an urgent need to develop efficient and reliable time-evolving MHD coronal models to further
improve our ability to predict space weather.
Aims. COCONUT is a rapidly developing MHD coronal model. Adopting the efficient implicit algorithm makes it suitable for per-
forming computationally intensive time-evolving coronal simulations. This paper aims to extend COCONUT to an efficient time-
evolving MHD coronal model.
Methods. In this MHD model, as usual, an implicit temporal integration algorithm is adopted to avoid the Courant-Friedrichs-Lewy
(CFL) stability restriction and increase computational efficiency by large time steps. The Newton iteration method is applied within
each time step to enhance the temporal accuracy. The unstructured geodesic mesh is used for flexibility in mesh division and to avoid
degeneracy at the poles. Furthermore, an HLL Riemann solver with a self-adjustable dissipation term accommodates both low- and
high-speed flows. A series of time-evolving photospheric magnetograms are utilized to drive the evolution of coronal structures from
the solar surface to 25 Rs during two Carrington rotations (CRs) around the 2019 eclipse in an inertial coordinate system. It shows
that COCONUT can mimic the coronal evolution during a full CR within 9 hours (1080 CPU cores, 1.5M cells). We also compare
the simulation results of time-evolving versus quasi-steady-state coronal simulations in the thermodynamic MHD model to validate
the time-evolving approach. Additionally, we evaluate the effect of time steps on the simulation results to find an optimal time step
that simultaneously maintains high efficiency and necessary numerical stability and accuracy.
Results. Consequently, we developed the first fully implicit time-evolving coronal model, and this highly efficient model is promising
for timely and accurately simulating the time-evolving corona in practical space weather forecasting.

Key words. Sun: magnetohydrodynamics (MHD) –methods: numerical –Sun: corona

1. Introduction

Space weather refers to the variable physical conditions on the
Sun and in the solar wind, magnetosphere, ionosphere, and ther-
mosphere of the Earth. It can influence the performance and
reliability of space-borne and ground-based technological sys-
tems and affect human life and health. Since humanity en-
tered the electric age, the economic losses caused by severe
space weather have been enormous and continue to increase.
There is thus an urgent need to develop advanced Sun-to-Earth
model chains to understand the mechanisms of space weather
and ultimately provide reliable space weather forecasts hours
to days in advance (e.g., Baker 1998; Feng et al. 2011a, 2013a;
Feng 2020b; Koskinen et al. 2017; Singer et al. 2001; Siscoe
2000). The physically based MHD modeling is the first prin-

cipal method capable of bridging large heliocentric distances
from near the Sun to well beyond Earth’s orbit self-consistently
(e.g., Detman et al. 2006; Dryer 2007; Feng et al. 2007, 2014b,
2010, 2011b, 2012a,b, 2014a, 2017; Feng 2020b; Gombosi et al.
2018; Hayashi et al. 2006; Li & Feng 2018; Li et al. 2020;
Lugaz & Roussev 2011; Mikić et al. 1999; Nakamizo et al.
2009; Riley et al. 2012; Shen et al. 2021; Tóth et al. 2012;
Usmanov 1993; Usmanov & Goldstein 2003; Wu & Dryer 2015;
Yang et al. 2021; Zhou et al. 2012; Zhou & Feng 2017). How-
ever, realistic MHD simulations of the large solar-terrestrial sys-
tem are complex, involving various physical phenomena across
diverse spatiotemporal scales, and are very computationally in-
tensive. We need to develop more efficient and reliable MHD
models to improve our ability to timely and accurately predict

Article number, page 1 of 24

http://arxiv.org/abs/2409.02043v1
songyongliang


songyongliang




A&A proofs: manuscript no. COCONUT

space weather (e.g., Feng 2020b; Owens et al. 2017, and refer-
ences therein).

Since the solar-terrestrial space is vast and involves diverse
spatiotemporal scale phenomena, and it is difficult to use a single
model to simulate the significantly different physical phenomena
across the entire solar-terrestrial space, coupling different mod-
els dedicated to specific regions and physical problems has be-
come the preferred approach for establishing a space weather
forecasting framework (e.g., Feng et al. 2013a; Goodrich et al.
2004; Hayashi et al. 2021; Kuźma et al. 2023; Odstrcil et al.
2004; Perri et al. 2022, 2023; Poedts, S. et al. 2020; Tóth et al.
2012). In the coupled Sun-to-Earth model chain, the observed
photospheric magnetic fields serves as input data to the so-
lar coronal model, the solar coronal model provides the inner
boundary conditions for the inner heliosphere model. The inner
heliosphere model gives boundary information to the geomag-
netic model. Among these components, the solar coronal model
is crucial for determining the initialization of the remaining mod-
els, and it is also a key factor affecting the simulation results of
solar disturbance propagation and evolution (Brchnelova et al.
2022; Perri et al. 2023). In addition, the solar wind is increased
from subsonic

/

sub-Alfvénic to supersonic
/

super-Alfvénic in the
solar coronal region and the solar disturbances such as coronal
mass ejections (CMEs) and solar proton events also propagate
through this channel (Feng 2020b; Kuźma et al. 2023).

Though the solar corona is a crucial link in the Sun-to-Earth
model chain and significantly impacts the ultimate effects of
space weather on our technology, physics-based MHD coronal
models are also the most complex and computationally inten-
sive component. For example, a steady-state global solar coro-
nal simulation ranging from 1 to 20 Rs consisting of about 1
M cells and calculated by an explicit MHD model which uti-
lized a solenoidality-preserving approach to maintain magnetic
field divergence-free constraints takes about 50 hrs of comput-
ing time on 576 MPI processes to obtain a steady-state solu-
tion (Feng et al. 2019). Also, a steady-state global solar coro-
nal simulation ranging from 1 to 50 Rs consisting of 4.1 M
cells and calculated by an explicit code costs about 100 thou-
sand CPU hours to converge to a quasi-steady state (Réville et al.
2020). In these simulations, the time step is limited to a few
seconds due to the restriction of the Courant-Friedrichs-Lewy
(CFL) stability condition, which states that the time step length
should be limited by the size of the spatial mesh divided by
the fastest wave speed (times a constant of order 1). Conse-
quently, researchers have to make many simplifications in so-
lar coronal modeling for the sake of high efficiency. For in-
stance, the empirical based Wang-Sheeley-Arge (WSA) solar
coronal model (Arge et al. 2003; Yang et al. 2018) in EUHFO-
RIA (Poedts, S. et al. 2020; Pomoell & Poedts 2018). However,
the empirical solar coronal models discard a lot of important in-
formation, and it has been demonstrated that even a simple MHD
model provides better forecasts (Samara et al. 2021). Therefore,
more efforts are required to establish more efficient and accurate
MHD solar coronal models.

In recent decades, many researchers have been working on
maintaining the positivity-preserving (PP) property of thermal
pressure and density in MHD solar coronal simulations. For ex-
ample, a self-adjusting PP reconstruction method, originally pro-
posed by Balsara (2012) for solving hydrodynamic and magne-
tohydrodynamic equations, has been implemented in solar coro-
nal simulations by Feng et al. (2017). It was applied to con-
servative variables via a flattener function defined according
to the rarefactive and compressive motions of flow. Further-
more, Feng et al. (2021) and Wang et al. (2022a) extended this

method to primitive variables and implemented it in implicit
MHD coronal models. In recent years, some PP Harten-Lax-
van Leer (HLL) Riemann solvers (Wu & Shu 2019) are used to
design PP MHD coronal models (Feng et al. 2021; Wang et al.
2022a). Although the HLL-family approximate Riemann solvers
(e.g., Feng 2020a, and references therein) perform well in pre-
serving PP property for compressible high-speed flow with large
Mach number, their diffusion is excessive for the incompressible
low-speed flow with a small Mach number. Therefore, a suit-
able low-dissipation numerical flux solver is desired for low-
speed flows to avoid degradation of solution accuracy (e.g.,
Esquivel et al. 2010; Kitamura et al. 2011; Kitamura & Balsara
2018; Minoshima et al. 2020; Minoshima & Miyoshi 2021;
Wang et al. 2022a). It can be seen that the approximate re-
construction method and flux solver are beneficial to maintain
PP property of MHD models. In this paper, under the cell-
centered finite-volume framework of COCONUT, we implement
Venkatakrishnan limiter (Venkatakrishnan 1993) in the recon-
struction formula of primitive variables as did before to control
spatial oscillation. Furthermore, we design an HLL Riemann
solver with a self-adjustable dissipation term to accommodate
both low- and high-speed flows.

Additionally, Brchnelova et al. (2023) improved the PP
property of COCONUT by manipulating the inner-boundary
density according to the local Alfvénic velocity. In this method,
the active region density was carefully increased to avoid an ab-
normally large Alfvénic speed when the local inner-boundary
Alfvénic velocity exceeds a prescribed maximum Alfvénic
speed. By implementing this method, some non-physical nega-
tive thermal pressures and very high-speed streams developed in
the domain above the active regions (Kuźma et al. 2023) can be
avoided. Consequently, the performance, both in terms of con-
vergence and physical accuracy, can be improved. To enhance
the PP property of this time-evolving MHD coronal model, we
further extend this method to all the computational domains and
apply a smooth hyperbolic tangent function to gradually increase
the plasma density when the local Alfvénic speed exceeds 2000
Km

/

S. In the future, we can take some extra measures, such as
the self-adjusting PP reconstruction method (Feng et al. 2021;
Wang et al. 2022a) and the incorporation of mass flux limita-
tion (Hayashi 2005; Yang et al. 2012), to further enhance the PP
property of COCONUT.

Moreover, reducing the magnetic field discretization error is
also helpful in maintaining the PP property of MHD models in
low β regions. Considering that (B + ǫ B)2 −B2 ≡ 2 ǫ B2 + ǫ2 B2

with ǫ B denoting the magnetic field discretization error, the
magnetic pressure discretization error can be comparable to ther-
mal pressure in low β (the ratio of the thermal pressure to the
magnetic pressure) regions and non-physical negative thermal
pressure are prone to appear when deriving thermal pressure
from energy density. To avoid such an undesirable situation,
some researchers try to decrease the magnetic field discretiza-
tion error by adopting fine meshes near the solar surface. For
Alfvén Wave Solar atmosphere Model (AWSoM), a spherical
grid ranging from 1 Rs to 24 Rs is used for the coronal com-
ponent and the grid is highly refined in the radial direction to-
ward the Sun with the smallest radial grid spacing been approx-
imately 700 Km and the total number of cells been 29.7 M in
van der Holst et al. (2022). For the Magnetohydrodynamic Al-
gorithm outside a Sphere (MAS) model, a nonuniform spherical
grid consisting of 27.3 M cells and covering a radial range from
1 Rs to 30 Rs is used in Caplan et al. (2017). It is highly non-
uniform in the radial direction, and the smallest cell size in the
radial direction is 340 Km. In this paper, we adopt the unstruc-
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tured geodesic mesh (Brchnelova et al. 2022; Perri et al. 2022)
consisting of 1.5 M cells and covering a radial range from 1 Rs

to 25 Rs. The grid is gradually stretched in the radial direction
with an initial grid spacing of about 170 Km at the solar surface.
Besides, an icosahedron-based surface discretization is imple-
mented to cover the sphere with triangular elements with minor
variations.

On the other hand, we should strive to improve the compu-
tational efficiency of MHD coronal models. As we see, both
optimizations for hardware architectures (Caplan et al. 2019;
Feng et al. 2013b; Wang et al. 2019b) and efficient algorithms
(Feng et al. 2021; Perri et al. 2022, 2023; Wang et al. 2019a,
2022a,b) can significantly improve the computational efficiency
of high-performance computational MHD coronal models. Ac-
tually, the demand for supercomputing resources continues to
grow, often exceeding the capabilities of available hardware ar-
chitectures. Consequently, further enhancing the computational
efficiency of MHD coronal models increasingly relies on de-
veloping more efficient algorithms. For instance, by solving the
plasma parameters along the fixed potential magnetic field lines
from 1 D equations for the plasma motion and heat transport
together with the Alfvénic wave propagation in the low coronal
region and interfacing this threaded-field-line model with the full
MHD global corona model at 1.1 Rs, Sokolov et al. (2021) made
the updated AWSoM model, AWSoM-R (AWSoM-realtime),
achieve a faster-than-real-time performance on 200 CPU cores.
However, the original AWSoM model required 1000-2000 CPU
cores to run faster than real-time (Jin et al. 2017). Although ef-
fective, this simplification is only applicable to specific issues.
More generally, implicit strategies for temporal discretization
can be used to loosen the time-step limitation imposed by the
CFL stability restriction, thereby enhancing the computational
efficiency by utilizing a larger time step.

Recently, several successful attempts have been made to in-
crease the efficiency of MHD coronal models by using implicit
solvers. For instance, Wang et al. (2019b) achieved speedup
ratios of 31.27× and 28.05× in MHD solar coronal simula-
tions with an effective matrix-free implicit scheme. It reduces
the computational time for the steady-state solar wind study
from several days to only a few hours. Feng et al. (2021) and
Wang et al. (2022a,b) further improved the implicit method
and developed a very efficient parallel lower-upper symmetric
Gauss-Seidel (LU-SGS) matrix solver. It reduced the wall-clock
times of steady-state MHD coronal simulations from several
days to less than 1 hour, even with a plasma β smaller than
10−4. Also, COolfluid COroNal UnsTructured (COCONUT), a
novel MHD solar coronal model based on the Computational
Object-Oriented Libraries for Fluid Dynamics (COOLFluiD)1,
gained a speed up of 35X compared to the state-of-the-art time-
explicit Wind-Predict model (Perri et al. 2018) that is based on
the PLUTO code (Mignone et al. 2007), while achieving the
same level of accuracy in steady-state simulation (Perri et al.
2022, 2023). In addition, the CME simulations (Guo et al. 2023;
Linan et al. 2023) demonstrate that the time-dependent CO-
CONUT, which adopts sub-iterations during each physical time
step to improve temporal accuracy, has the potential to still be
faster than the explicit MHD SC models in time-dependent sim-
ulations while maintaining time-accurate using a suitable time
step. What’s more, Wang et al. (Submitted) proposed a more ef-
ficient time-accurate implicit MHD model of the solar corona
and CMEs. It was demonstrated to be capable of timely and
accurately simulating time-varying events in the solar corona,

1 https://github.com/andrealani/COOLFluiD.git

even with low plasma beta. Besides, the fully implicit scheme
of Block-Adaptive Tree Solarwind Roe-type Upwind Scheme
(BATS-R-US) code (Tóth et al. 2012), the explicit scheme of
which was used by AWSoM coronal model, can also produce
speedup ratios of order 10-20 compared to the explicit version in
simulations of some geophysical applications (Tóth et al. 2006,
2008). However, these coronal models are still steady-state mod-
els.

After gaining significant improvements in computational
efficiency, and with the epoch of fine spatio-temporal res-
olution observations on the horizon (McCrea & Rae 2019;
Srivastava et al. 2021), it’s time to extend these efficient steady-
state coronal models to more realistic time-evolving versions.
Steady-state coronal models assume that the solar coronal struc-
ture doesn’t change obviously during one Carrington rotation
period and use a time-invariant photospheric magnetic field as
an inner boundary to generate a steady-state coronal structure.
This simplification differs from the reality that the solar coro-
nal structure evolves over time (Owens et al. 2017) and leads to
discrepancies between the simulation results and observations
of the solar coronal structures (Cash et al. 2015; Réville et al.
2020). Unlike steady-state coronal models, time-evolving coro-
nal models are driven by typically hundreds of time-evolving
observed photospheric magnetograms and can achieve time-
evolving features of the large-scale coronal structures with
higher fidelity (Feng et al. 2023; Yang et al. 2012), and such a
technique of time-evolving coronal modeling may be particu-
larly relevant for the next generation of solar wind and CME
models (Lionello et al. 2023).

In the last decades, many researchers have worked on
developing and improving time-evolving coronal models.
For instance, Detman et al. (2006), Linker et al. (2016) and
Merkin et al. (2016) used a time series of photospheric magne-
tograms to drive an empirical source surface current sheet coro-
nal model to provide time-evolving lower boundary conditions
for the inner heliosphere MHD solar wind model. These hy-
brid Sun-to-Earth modeling systems are very efficient for real-
time operations but fail to produce coronal transient events or
mimic closed loops that rise beyond the source surface (usually
between 2.0 and 2.5 Rs). Furthermore, Hoeksema et al. (2020)
and Hayashi et al. (2021) employed the electric field derived
at the Sun’s photosphere from a sequence of vector magne-
togram and Doppler velocity measurements (Fisher et al. 2020)
to drive a magnetofrictional (MF) model, and then used the
MF model to produce time-evolving boundary magnetic fields
at 1.15 Rs for their global coronal-heliospheric MHD (GHM)
model. Although the MF model can be very numerically stable
in generating time-dependent three-dimensional coronal mag-
netic structures, it failed to provide the required initial dy-
namic states of the plasma in the low atmosphere. To ensure the
boundary plasma quantities at 1.15 Rs evolve consistently with
both the variations of the magnetic field specified from the MF
model and the governing MHD equations of the GHM model,
they employed the projected normal characteristics method (e.g.
Sauerwein 1966) at the interface boundary. Besides, Feng et al.
(2023) and Yang et al. (2012) specified the tangential boundary
electric field to make the flux evolution match the changes of
the observed radial magnetic field and employed the projected
normal characteristic method to make boundary conditions self-
consistent. In addition, Feng et al. (2012a), Lionello et al. (2023)
and Mason et al. (2023) employed the surface flux transport
model (DeVore et al. 1984; Schrijver & DeRosa 2003) to obtain
input maps that incorporate magnetic flux emergence and sur-
face flows for their MHD coronal models.
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Among these time-evolving coronal models mentioned
above, MAS (Lionello et al. 2023; Mason et al. 2023) adopts
a semi-implicit approach where only some source terms are
treated implicitly, and the time step needs to be chosen in ac-
cordance with the limitations imposed by the explicitly treated
terms (Feng 2020a). Feng et al. (2023) used the fully implicit
method (Feng et al. 2021; Wang et al. 2022a) only at the 6-layer
grid close to the solar surface in the radial direction and reported
that it helped to avoid the occurrence of negative density and
pressure caused by the strong magnetic field near the Sun. The
remaining models still use explicit methods. Obviously, the cur-
rent time-evolving coronal models can be much more efficient
and numerically stable for practical application works by appro-
priately adopting fully implicit algorithms.

In this paper, based on the time-dependent COCONUT coro-
nal model, we further design an HLL Riemann solver with a
self-adjustable dissipation term to accommodate both low- and
high-speed flows, take some PP measures to make the model
more numerically stable, and use cubic Hermite interpolation
to derive the time-evolving magnetograms at each physical time
step. Finally, we develop an efficient time-evolving MHD coro-
nal model driven by a series of time-evolving magnetograms
and the model has flexibility in selecting large time steps. This
model is expected to be used to provide inner-boundary condi-
tions for the inner heliosphere models in practical space weather
forecasting. As we know, most MHD inner heliosphere mod-
els adopt explicit numerical schemes, and their time steps, lim-
ited by the CFL stability criterion, are typically on the order
of 10 minutes (Detman et al. 2006; Hayashi 2012). This time-
step size is much larger than that in explicit MHD coronal mod-
els. It requires the coronal models to perform significantly more
calculations to maintain synchronization with the inner helio-
sphere models. Consequently, MHD coronal models become the
most computationally intensive component in the Sun-to-Earth
model chain. Therefore, we try to enhance flexibility in select-
ing the time step for our time-evolving MHD coronal model. It
will allow us to adjust the time steps in coronal simulations to
match those used in the inner-heliosphere models. In this way,
the MHD coronal model, with time steps determined by the in-
ner heliosphere model, will be able to provide the required accu-
rate inner-boundary conditions for the inner heliosphere model
while maintaining high efficiency. This approach will also make
it easier to mimic the entire solar-terrestrial domain with a single
tool, which can simplify the Sun-to-Earth modeling process.

Based on the above considerations, the paper is organized
as follows. In Section 2, we introduce the governing equations,
grid system, and initial conditions adopted in the solar coronal
simulations. In Section 3, the numerical formulation of the time-
evolving coronal simulations is described in detail. This section
mainly describes the discretization of the MHD equations, the
implementation of time-evolving boundary conditions, the HLL
Riemann solver with a self-adjustable dissipation term, and the
PP measures used to enhance the coronal model’s numerical sta-
bility. In Section 4, we demonstrate the simulation results. In
this section, the evolution of the corona during two CR peri-
ods around the 2019 eclipse mimicked by the time-evolving CO-
CONUT is demonstrated, a comparison of the 2019 eclipse sim-
ulations performed by both the time-evolving COCONUT and
its quasi-steady-state version is illustrated, the simulation results
calculated with different time-step sizes are also compared. In
Section 5, we summarize the main features of the efficient, fully
implicit, time-evolving coronal model and give some concluding
remarks.

2. Governing equations and grid system

This section mainly describes the governing equations, grid sys-
tem, and initial conditions used for the simulation of quasi-
steady-state coronal and time-evolving coronal simulations.

2.1. The governing equations

In this paper, based on the time-dependent COCONUT coronal
model (Perri et al. 2022; Baratashvili et al. Submitted), we fur-
ther develop the time-evolving version of COCONUT to make
time-evolving coronal simulations. First, we initiate a quasi-
steady-state coronal simulation constrained by a fixed magne-
togram to get the background corona. Once the steady-state sim-
ulation converges, we drive the subsequent evolution of the dy-
namic corona by a series of time-evolving photospheric magne-
tograms. The governing MHD equations are calculated in the
Heliocentric Inertial (HCI) coordinate system (Burlaga 1984;
Fränz & Harper 2002), and reads as follows.

∂U

∂t
+ ∇ · F (U) = S (U,∇U) . (1)

Here U = (ρ, ρv,B, E, ψ)T denotes the conservative variable vec-
tor, ∇U corresponds to the spatial derivative of U, the inviscid
flux vector F (U) is defined as below

F (U) =







































ρv

ρvv +
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p + B2

2

)

I

(E + pT ) v − B (v · B)
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and S (U,∇U) = Sgra + Sheat represents the source term vector
corresponding to the gravitational force and the heating source
terms defined as below

Sgra = −
ρGMs
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0

−∇ · q + Qrad + QH

0



































. (2)

In these formulations mentioned above, B =
(

Bx, By, Bz

)

and

v = (u, v,w) denote the magnetic field and velocity in Carte-
sian coordinate system, E =

p

γ−1
+ 1

2
ρv2 + 1

2
B2 means the total

energy density with the adiabatic index γ = 5
3
, pT = p + B2

2
is the total pressure, ρ and p represent the density and thermal
pressure of the plasma, r is the position vector, r = |r| denotes
the heliocentric distance, and t represents the time. For conve-
nience of description, in the definition of the magnetic field, a
factor of 1√

µ0
is absorbed with µ0 = 4 × 10−7π H m−1 denot-

ing the magnetic permeability. As usual, G means the univer-
sal gravitational constant, Ms means the mass of the Sun, and
GMs = 1.327474512 × 1020 m3 s−2. The thermal pressure of
the plasma is defined as p = ℜρT , where T is the temper-
ature of the bulk plasma, ℜ = 1.299 × 104m2 s−2 K−1 de-

notes the gas constant and is calculate by ℜ = 2∗kB

mcor∗mH
with

kB = 1.3806503× 10−23 J K−1 denoting the Boltzmann constant,
the molecular weight set to mcor = 1.27 (Aschwanden 2005) and
mH = 1.67262158 × 10−27 Kg representing the mass of hydro-
gen. We adopt the hyperbolic generalized Lagrange multiplier
(GLM) method (Dedner et al. 2002) to constrain the divergence
error, ψ and Vref denote the Lagrange multiplier and the prop-
agation speed of the numerical divergence error. In the energy
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source term, QH , Qrad and −∇ · q are used to mimic the coronal
heating, radiation loss, and thermal conduction, respectively.

As did in Baratashvili et al. (Submitted), the heat flux q
included in Sheat is defined in a Spitzer form or collisionless
form according to the radial distance as below (Hollweg 1978;
Mikić et al. 1999)

q =

{

−ξT 5/2(b̂ · ∇T )b̂, if 1 ≤ r ≤ 10Rs

αnekBTv, if r > 10Rs
. (3)

Here b̂ = B
|B| , ξ = 9.0 × 10−12Jm−1s−1K−

7
2 , α is set to 3

2

(Lionello et al. 2008) and ne is the electron number density. The
radiative approximation is determined by assuming the radiative
losses to be optically thin (Rosner et al. 1978; Zhou et al. 2021),

Qrad = −nenpΛ (T ) . (4)

where ne and np denote the electron and proton number den-
sities, respectively, and are assumed to be equal for the hydro-
gen plasma. Λ (T ) is a temperature-dependent radiative cooling
curve function. Similar to van der Holst et al. (2014), Λ (T ) in
this paper is derived from version 9 of CHIANTI (Dere et al.
2019), an atomic database for emission lines, and the profile of
log (Λ (T )) independent of log (T ), with Λ (T ) and T in unite of
erg S−1 cm3 and K, is demonstrated in Fig. 1. As did in Xia et al.
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Fig. 1. Radiative cooling curve profile derived from version 9 of CHI-
ANTI (Dere et al. 2019) atomic database. The horizontal axis denotes
the decadic logarithm of temperature, and the vertical axis shows the
logarithm of the radiative cooling curve function value. The units of
temperature and radiative cooling curve function are K and erg S−1 cm3,
respectively.

(2011), we set Λ (T ) to zero when T < 2 × 104 K, which
means the plasma has become optically thick and is no longer
fully ionized. Although the form of the coronal heating term QH

strongly affects the plasma density and temperature of the solu-
tions (Lionello et al. 2008), the heating mechanism of the corona
is still unclear. Compromisingly, we adopt the following empiri-
cal heating source term, which was discussed and recommended
in Baratashvili et al. (Submitted). It is proportional to the local

magnetic field strength (Mok et al. 2005) while also exhibiting
an exponential decay in the radial direction (Downs et al. 2010).

QH = H0 · |B| · e−
r−Rs
λ . (5)

where H0 = 4 × 10−2 J m−3 S−1 Tesla−1 and λ = 0.7Rs.

To make the governing equations more convenient to dis-
cretize, the variables r, ρ, v, p, B and t are normalized by Rs, ρs,

Va,s, ρsV
2
a,s, Bs and

Rs

Va,s
, respectively. Here Rs = 6.95 × 108 m is

the solar radius, ρs = 1.67×10−13 Kg m−3, Bs = 2.2×10−4 Tesla

and Va,s =
Bs

ρ0.5
s

denotes the characteristic plasma density, mag-

netic field strength and Alfvénic velocity at solar surface, respec-
tively.

2.2. Computational grid system and initializations

The governing equation is numerically solved based on the cell-
centered finite-volume method. The computational domain is a
spherical shell ranging from 1.01 to 25 Rs, and we adopt the
unstructured 6th-level subdivided geodesic mesh to avoid degen-
eracy in the polar regions. In this paper, an icosahedron-based
surface discretization is implemented to create a geodesic poly-
hedron with triangular elements. The 3D spherical shell grid is
then constructed by stacking the discretized surface radially out-
ward with pre-determined radial intervals. A more detailed de-
scription of the grid is available in Brchnelova et al. (2022). In
this paper, the computational domain is divided into 1495040
non-overlapped triangular pyramid cells, with each cell consist-
ing of 2 triangular faces and 3 quadrilateral faces, and these
cells are distributed to different processors by ParMETIS soft-
ware package (Karypis 2011). There are 73 layers of gradually
stretched cells in the radial direction, and each layer contains
20480 cells with minor variations. It means each inner-boundary
face, a patch of the solar surface, can cover a supergranulation
or a sunspot.

The observed line-of-sight photospheric magnetic field is as-
signed to the inner-boundary faces to provide inner-boundary
conditions of the magnetic field. The original photospheric mag-
netic field strength can be hundreds of Gauss near active regions
and may cause non-physical negative temperatures or pressures
(Kuźma et al. 2023). To avoid such undesired situations, we use
a potential-field (PF) solver with spherical harmonic expansions
higher than 20 orders neglected to filter the very small-scale
structures in the original photospheric magnetograms. Gener-
ally, magnetic maps reconstructed by a PF solver of 20-order
spherical harmonic expansion are already fully sufficient for
the purposes of space weather forecasting (Kuźma et al. 2023).
Therefore, we utilize these preprocessed photospheric magne-
tograms to constrain the coronal simulations in COCONUT
(Kuźma et al. 2023; Perri et al. 2022, 2023).

In this paper, we adopt the GONG-zqs photospheric mag-
netogram, Zero-point Corrected QuickReduce Synoptic Map
Data provided by Global Oscillation Network Group observa-
tories (Li et al. 2021; Perri et al. 2023), to constrain the quasi-
steady-state coronal simulations and to drive the following time-
evolving coronal simulations. At the beginning of the quasi-
steady-state coronal simulations, a PF solver with the ob-
served GONG-zqs photospheric magnetogram served as the in-
ner boundary is used to generate the initial magnetic field at all
the cell-center points of our mesh. The plasma density ρ, radial
speed vr and thermal pressure p are given by solving Parker’s
one-dimensional hydrodynamic isothermal solar wind solution
(Parker 1963) and the initial temperature and plasma density at
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the solar surface are set to be 1.5×106 K and 1.67×10−13 Kg m−3,
respectively. After the quasi-steady coronal simulations con-
verge, the time-varying magnetograms are used to drive the fol-
lowing time-evolving coronal simulations. In both quasi-steady-
state and time-evolving coronal simulations, the radial magnetic
field at the inner-boundary face-center points is linearly interpo-
lated from the magnetogram data. In contrast, the magnetic field
within the inner domain determines the tangential component of
the magnetic field.

3. Numerical method formulation

In this section, we present the numerical method formulations
used in this COCONUT coronal model to reproduce the quasi-
steady-state corona and to mimic the following evolution process
of the dynamic corona. We briefly describe the discretization of
the MHD equations and demonstrate how the inner-boundary
conditions are implemented.

In such formulation, a least-square (LSQ) method cou-
pled with a continuously differentiable Venkatakrishnan limiter
(Venkatakrishnan 1993) is utilized to reconstruct the piece-wise
formula of primitive variables in each cells, a hyperbolic GLM
method is adopt to maintain divergence-free constraint of mag-
netic field, an HLL Riemann solver with a self-adjustable dis-
sipation term is used to calculate numerical flux, the density is
appropriately adjusted to avoid the abnormally large Alfvénic
speed and thereby enhance the PP property of COCONUT, a
fully implicit algorithm is adopted to increase the computational
efficiency by enlarging time-step length, the Newton iteration
method is applied within each time step of the implicit algo-
rithm to solve the nonlinear equations and improve the temporal
accuracy of the implicit solver with time-step length exceeding
the CFL condition, and thousands of observed GONG-zqs mag-
netograms are used to drive the evolution of the dynamic corona
in an inertial coordinate system.

As usual, Godunov’s method is used in COCONUT to ad-
vance cell-averaged solutions in time by solving a Riemann
problem at each cell interface (Einfeldt et al. 1991; Godunov
1959). By integrating Eq. (1) over the pentahedron cell celli and
using Gauss’s theorem to calculate the volume integral of the
divergence of flux, we reach the following discretized equation

Vi

∂Ui

∂t
= −

∮

∂Vi

F · ndΓ + ViSi, (6)

where
∮

∂Vi
F · ndΓ =

5
∑

j=1

Fi j · ni jΓi j and Si = Sgra,i + Sheat,i. Here

and hereafter Ui and Si means the cell-averaged solution variable
and source term in celli, Vi is the volume of celli, Γi j means the
interface shared by celli and its neighboring cell cell j, and also

denote the area of this interface, ni j =
(

nx,i j, ny,i j, nz,i j

)

is the unit

normal vector of Γi j and points from celli to cell j. Below we
list the formula of Fi j · ni j with the subscript “i j" denoting the
corresponding variables on Γi j. For convenience of description,
we describe Fi j · ni j as Fn,i j here and hereafter.

3.1. Spatial discretization and temporal integration

As usual, approximate Riemann solvers, such as HLL
(Feng et al. 2021) and AUSM type (Kitamura 2020; Wang et al.
2022a) solvers, can be used to compute the inviscid flux Fn,i j.
In this paper, we adopt the HLL Riemann solver. The HLL Rie-

mann solver can be described as below

Fn,i j (UL,UR) =
Fn (UL) + Fn (UR)

2
− 1

2
DHLL (UL,UR) (7)

with

DHLL (UL,UR) =
(S L + S R) (Fn (UR) − Fn (UL))

S R − S L

− 2S RS L

S R − S L

(UR − UL)

(8)

and

Fn (U) =
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Vnρw

(

vBx − Byu
)

· ny,i j + (wBx − Bzu) · nz,i j + ψi j · nx,i j
(

uBy − Bxv
)

· nx,i j +
(

wBy − Bzv
)

· nz,i j + ψi j · ny,i j

(uBz − Bxw) · nx,i j +
(

vBz − Byw
)
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.

Here Vn (U) = v · ni j and Bn (B) = B · ni j denote the ve-
locity and magnetic field along the normal direction of Γi j, S L

and S R usually stand for the conventional two fast waves in the
HLL Reimann solver (Einfeldt et al. 1991; Gurski 2004). Un-
less otherwise stated, the subscript “L" or “R" denote the cor-
responding left or right variables evaluated on the centroid of
Γi j. In this paper, we set S L = min (0, λmin (UL) , λmin (UR)) and
S R = max (0, λmax (UL) , λmax (UR)) with

λmin (U) = min
(

Vn (U) ,Vn (U) ± c f or s (U) ,Vn (U) ± cA (U)
)

and

λmax (U) = max
(

Vn (U) ,Vn (U) ± c f or s (U) ,Vn (U) ± cA (U)
)

where c f or s (U) =

√

0.5

(

γp

ρ
+ B2

ρ
±

√

(

γp

ρ
+ B2

ρ

)2 − 4
γp

ρ

B2
n

ρ

)

and

cA (U) =
|Bn|
ρ0.5 .

Although the HLL Riemann solver performs well in preserv-
ing the PP property for compressible high-speed flows with large
Mach numbers, its diffusion is excessive for incompressible low-
speed flows with small Mach numbers. Therefore, we introduce

a factor ϕ =
max(|S L |,|S R |)

S R−S L
to the second term in RHS of Eq. (8),

which plays a major role in low Mach number regions and de-
creases to zero in high Mach number regions, to reduce the diffu-
sion of HLL Riemann solver for low-speed flow. Consequently,
we get the following HLL Riemann solver with a self-adjustable
dissipation term,

Fn,i j (UL,UR) =
Fn (UL) + Fn (UR)

2
− 1

2
D
′

HLL (UL,UR) (9)

where

D
′

HLL (UL,UR) =
(S L + S R) (Fn (UR) − Fn (UL))

S R − S L

− ϕ 2S RS L

S R − S L

(UR − UL)

(10)

The factor ϕ will reduce the dissipation term of the HLL Rie-
mann solver by half for low-speed flows and recover to the orig-
inal one for high-speed flows. We find that introducing this fac-
tor improves the numerical stability of our coronal model in our
simulations.
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As for the cell-averaged source terms in celli, Sgra,i and Qrad,i

and QH,i are calculated by substituting the corresponding vari-
ables at the centroid of celli into formulations of Sgra and Qrad

and QH . Whereas (∇ · q)i is calculated by Green-Gauss theorem,

(∇ · q)i =
1
Vi

5
∑

j=1

qi j · ni jΓi j where qi j = q
(

Ti j, (∇T )i j ,Ui j

)

is the

heat flux through Γi j. In this paper, Ti j is derived from the equa-

tion of state Ti j =
pi j

ℜρi j
.

As we see, the plasma states on the cell surface Γi j are still
required in the calculation of the inviscid flux Fn,i j and heat flux
qi j ·ni j. For convenience of calculation, we utilize a second-order
reconstruction method to calculate the piecewise polynomial of
the primitive variable.

Xi(x) = X|i + φi (∇X)|i · (x − xi) (11)

where X ∈ {ρ, u, v,w, Bx, By, Bz, p, ψ}, X|i is the corresponding

variable at xi, the centroid of celli, and (∇X)|i =
(

∂X
∂x
, ∂X
∂y
, ∂X
∂z

)

∣

∣

∣

∣

i

is the derivative of X at xi which is calculated by least square
method (Barth 1993; Lani 2008), and φi is the Venkatakrishnan
limiter (Venkatakrishnan 1993) used to control spatial oscilla-
tion.

In the quasi-steady coronal simulations, we perform a back-
ward Euler temporal integration on Eq. (1) and reach the follow-
ing equation,

Vi

∆Un
i

∆t
+ Ri

(

Un+1
)

= 0. (12)

The superscripts “n” and “n+1” denote the time level, Ri

(

Un+1
)

=

5
∑

j=1

Fn,i j

(

Un+1
L
,Un+1

R

)

Γi j−ViS
n+1
i

means the residual operator over

celli at the (n + 1)-th time levels, ∆Un
i
= Un+1

i
− Un

i
is the solu-

tion increment between the n-th and (n + 1)-th time level, and
∆t = tn+1 − tn is a user-defined time increment. In the quasi-
steady coronal simulations, the time variable t doesn’t refer to a
physical time, but a relaxation time used to implement the time-
relaxation iteration to get a quasi-steady state coronal structure.

After reaching a steady-state coronal structure, we utilize a
series of time-varying magnetograms to drive the following evo-
lution of the dynamic corona. In time-evolving coronal simula-
tions, in addition to spatial accuracy, we should also consider
temporal accuracy. To improve the temporal accuracy of the im-
plicit solver with time-step length exceeding the CFL condi-
tion, we adopt the Backward Differentiation Formula of Order
2 (BDF2) for the temporal integration and implement the New-
ton iteration method within each time step of the implicit al-
gorithm to further enhance the temporal accuracy (Linan et al.
2023). Newton iteration is used to update the intermediate state
at each physical time step until the L2 norm of the differences in
state variables between two consecutive iterations decreases to
10−3 or after 10 Newton iterations.

Furthermore, to enhance the PP property of COCONUT, the
density updated during the Newton iterations is appropriately
adjusted according to the local Alfvénic velocity. This manip-
ulation ensures the local Alfvénic velocities calculated from the
updated intermediate coronal state are within a reasonable range,
thereby improving the PP property of COCONUT. In this adjust-
ment, we apply a smooth hyperbolic tangent function to gradu-
ally increase the plasma density when the local Alfvénic speed
reaches a prescribed maximum Alfvénic speed, VA,max, as fol-
lows.

ρ = Υρ
B2

V2
A,max

+
(

1 − Υρ
)

ρo (13)

whereΥρ = 0.5+0.5 · tanh

(

VA−VA,max

V f ac
· π

)

with VA =
B

ρ0.5
o

, VA,max =

2000 Km S−1 and V f ac = 2 Km S−1. Here the subscript “o" on
ρ refers to the density updated in the Newton iteration without
adjustment.

3.2. Implementation of boundary conditions

In COCONUT, we adopt one layer of ghost cells near the bound-
aries (Lani 2008). Near the inner boundary, the variables in ghost
cells are defined as below.

XG = 2XBC − Xinner, X ∈ {ρ, u, v,w, Bx, By, Bz, p, ψ}. (14)

where the subscripts “G" and inner denote the corresponding value
in the ghost cell and at the centroid of the nearest cell in the inner
domain. In this paper, we set ψBC = 0 (Perri et al. 2022). ρBC and
pBC are defined similar to Brchnelova et al. (2023) to improve
PP property of COCONUT.

pBC = Υp

B2
BC

2
βmin +

(

1 − Υp

)

ps (15)

where Υp = 0.5 + 0.5 · tanh

(

βmin− ps

0.5·B2
BC

β f ac
· π

)

with β f ac = 2 × 10−6

and βmin = 0.02. ρBC is defined as did in Eq. (13), with ρo and B
replaced by ρs and BBC . Besides, the inner boundary velocity v =
(uBC, vBC,wBC) is defined mainly according to the velocity in the
inner domain. The inner-boundary magnetic field is determined
by both the observed radial field and the tangential components
in the inner domain.

In quasi-steady-state coronal simulations, the radial compo-
nent of the inner-boundary magnetic field, BBC,r, is linearly in-
terpolated from a single magnetogram. For time-evolving coro-
nal simulations, we utilize cubic Hermite interpolation, in which
four magnetograms are used as the stencil, to derive an inter-
mediate magnetogram at the corresponding time. The BBC,r is
then linearly interpolated from this intermediate magnetogram.
Meanwhile, the tangential components BBC,θ and BBC,φ are de-
fined as the corresponding values at the centroid of the nearest
cell in the inner domain. In this paper, the GONG-zqs synoptic
maps are used to drive the evolution of coronal structures in the
HCI coordinate system.

The GONG-zqs data is formulated in an inertial coordi-
nate system, and the time interval between two adjacent magne-
tograms around the 2019 eclipse is around 1 hour with a fluctua-
tion of several minutes. Since it’s more convenient to deal with a
batch of the input magnetogram-data files with a constant inter-
val than those with nonuniform intervals, we first perform cubic
Hermite interpolations on these observed magnetograms to get
a series of magnetograms with a constant interval of 1 hour and
then utilize these magnetograms to drive the time-evolving coro-
nal simulations. During the time-evolving coronal simulations,
the time-step sizes are set to be several minutes. They are smaller
than the time interval between two adjacent magnetograms, thus
we perform a cubic Hermite interpolation on these input mag-
netograms as below to get the required inner-boundary magnetic
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field at each time step.

BBC,r (t, θ, φ) = h00

(

t
′ )

Br (θ, φ)m

+ h10

(

t
′)

(tm+1 − tm)

(

∂Br (θ, φ)

∂t

)

m

+ h01

(

t
′)

Br (θ, φ)m+1

+ h11

(

t
′)

(tm+1 − tm)

(

∂Br (θ, φ)

∂t

)

m+1

with t
′
=

t − tm

tm+1 − tm
.

(16)

Here BBC,r (t, θ, φ) is the interpolated magnetic field at
the inner-boundary facial centroid located at (Rs, θ, φ), t
denotes the physical time, and the subscripts “m" and
“m+1" refer to the m-th and (m+1)-th magnetograms, two
adjacent magnetograms nearby t, with tm < t ≤
tm+1,

(

∂Br(θ,φ)

∂t

)

m
= 1

2

(

Br(θ,φ)m+1−Br(θ,φ)m

tm+1−tm
+

Br(θ,φ)m−Br(θ,φ)m−1

tm−tm−1

)

and
(

∂Br(θ,φ)

∂t

)

m+1
= 1

2

(

Br(θ,φ)m+2−Br(θ,φ)m+1

tm+2−tm+1
+

Br(θ,φ)m+1−Br(θ,φ)m

tm+1−tm

)

. Besides,

h00

(

t
′ )

= 2t
′3 − 3t

′2
+ 1, h10

(

t
′ )

= t
′3 − 2t

′2
+ t

′
, h01

(

t
′ )

=

−2t
′3
+3t

′2
and h11

(

t
′)

= t
′3− t

′2
are used to normalize the cubic

Hermite interpolation formula.

The inner-boundary velocity is defined as the correspond-
ing value at the centroid of the nearest cell in the inner domain
and constrained by a predefined speed VBD,max. Considering that
the average velocity of plasma flow in the area covered by an
inner-boundary face is typically less than 1 Km S−1, we further
constrain the inner-boundary facial average plasma velocity to
not significantly exceed this velocity as below during our simu-
lations.

vBC =
vinner

|vinner |
(

ΥvVBD,max + (1 − Υv) |vinner |
)

, (17)

where Υv = 0.5 + 0.5 · tanh

(

|vinner |−VBD,max

VBD, f ac
· π

)

with VBD,max =

1 Km S−1 and VBD, f ac = 2 m S−1. Here vinner refers to the veloc-
ity of plasma flow at the centroid of the nearest cell in the inner
domain.

Since this model is designed to mimic coronal structures and
provide inner-boundary conditions for inner heliosphere models
such as EUHFORIA (Poedts, S. et al. 2020; Pomoell & Poedts
2018) or ICARUS (Verbeke et al. 2022), which start from 0.1
AU where the solar wind is supersonic

/

super-Alfvénic, the
outer boundary of this model is set to 25 Rs. Since this dis-
tance is outwards enough to allow the plasma flow to become
supersonic

/

super-Alfvénic, we prescribe the Neumann boundary
conditions at the outer boundary (Brchnelova et al. 2022), there-
fore all the state variables in the ghost cells nearby out boundary
are derived from state variables in the inner computational do-
main. We extrapolate r2Br, Bθ, Bφ, ρ, u, v, w p and ψ from the
outermost cell centers in computational domain to the ghost cells
with a zero gradient (Brchnelova et al. 2022; Perri et al. 2022).

4. Numerical results

In this section, the time-evolving coronal model developed in
previous sections is employed to mimic the evolution of the coro-
nal structures during CRs 2219 and 2220. These simulations are
around the 2019 eclipse which occurred on July 2, 2019, and are
driven by about 1300 GONG-zqs magnetograms downloaded at

https://gong.nso.edu/data/magmap/QR/zqs/ and rang-
ing from 11:00 on June 29, 2019 to 21:00 on August 22, 2019.
As mentioned in Subsection 2.2, the initial magnetic fields for
the quasi-steady state coronal simulation are achieved from the
potential field (PF) model whose bottom boundary condition is
specified by the synoptic maps of the radial photospheric mag-
netic field centered on 11:00 on June 29, 2019. Followed by the
quasi-steady state solar coronal simulation, these time-evolving
photospheric magnetograms are used to drive the time-evolving
coronal simulations from the solar surface to 25 Rs during these
two CRs in an inertial coordinate system.

In subsection 4.1, we perform both quasi-steady state and
time-evolving MHD coronal simulations and compare their sim-
ulation results on July 2, 2019, and July 30, 2019, to validate the
time-evolving approach. It demonstrates that the simulated re-
sults from the quasi-steady state coronal simulations are gener-
ally consistent with those calculated by the time-evolving MHD
coronal model when configured at the inner boundary by the
same magnetogram. However, the timing diagrams of some vari-
ables in the time-evolving coronal simulation are obviously dif-
ferent from those derived from the quasi-steady state simula-
tions. Furthermore, in Subsection 4.2, we evaluate the impact of
time-step sizes on the time-evolving coronal simulation results.
It shows that the time-evolving coronal model with a time-step
size of 10 minutes achieves almost the same simulation results
as those calculated with a time-step size of 2 minutes, but gains
a speedup of approximately 2.23 ×.

In this paper, all the calculations are performed on the wice
cluster of Tier-2 supercomputer infrastructure from Flemish Su-
percomputer Center (Vlaams Supercomputer Centrum-VSC),
the Flanders’ most highly integrated high-performance research
computing environment (https://www.vscentrum.be/). All
the simulations are completed on 1080 CPU cores. The wall-
clock time for the time-evolving coronal simulations with time-
step sizes of 10 minutes and 2 minutes, covering two CRs, is
approximately 17.54 hours and 39.06 hours, respectively. In the
following, we present the results of the MHD coronal simula-
tions during CRs 2219 and 2220.

4.1. Time-evolving versus quasi-steady-state coronal
simulation results

In this subsection, we present the simulation results obtained
from the time-evolving COCONUT coronal model and compare
them with the results from the quasi-steady state COCONUT
model. We adopt a constant time-step size of 10 minutes during
the time-evolving coronal simulation presented here and include
a movie to show the evolution of some selected magnetic field
lines between the 82-nd and 735-th hours of the time-evolving
simulation. We also compare the simulation results with coronal
observations and provide a movie to demonstrate the evolution
of pB images synthesized from simulation results and viewed
from STEREO-A’s perspective. Additionally, we compare the
plasma density, radial velocity, and temperature calculated by
the time-evolving coronal model at the 82-nd and 735-th hours of
the time-evolving simulation with those calculated by the quasi-
steady state COCONUT coronal model, constrained by magne-
tograms at 19:00 on July 2, 2019, and at 00:00 on July 30, 2019,
corresponding to the 82-nd and 735-th hours in the time-evolving
simulation. Besides, we display timing diagrams of radial veloc-
ity, proton number density, and magnetic field strength during a
CR period of physical time within some high-density low-speed
(HDLS) and low-density high-speed (LDHS) regions simulated
by the time-evolving coronal model. We also map the heliolongi-
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tude in quasi-steady state coronal simulations to a Carrington ro-
tation period of physical time and compare the timing diagrams
of selected variables in both the quasi-steady and time-evolving
simulations.

In Fig. 2, we compare white-light pB images from 2.5 to
15 Rs that are observed from the outer coronagraph of the
Sun Earth Connection Coronal and Heliospheric Investigation
(SECCHI) instrument suite (a, b) on board the STEREO-A
spacecraft (Frazin et al. 2012; Howard et al. 2008; Kaiser et al.
2008; Thompson et al. 2003; Thompson & Reginald 2008) and
the white-light pB images synthesized from the quasi-steady
state (c, d) and time-evolving (e, f) coronal simulation results.
The left panel demonstrates the pB images observed on July 2,
2019 (a), and synthesized from the simulation result of quasi-
steady state simulation constrained by magnetograms at 19:00
on July 2, 2019 (c) and from the simulation result at the 82-th
hour of the time-evolving simulation (e). The right panel demon-
strates the pB images observed on July 30, 2019 (b), and syn-
thesized from the simulation result of quasi-steady state simu-
lation constrained by magnetograms at 00:00 on July 30, 2019
(d) and from the simulation result at the 735-th hour of the time-
evolving simulation (f). The observed and modeled images all
show four bright structures near the solar equator. However, the
locations of the two simulated bright structures in the northern
hemisphere are further north and the simulated bright structure
at the southeast limb extends further outward, compared with
those in the observation results. This discrepancy may be at-
tributed to inaccurate observations for both polar photospheric
magnetic fields. Additionally, it can be seen that there are no
obvious differences in both observed and simulated pB images
after the corona evolves over a CR period. The pB images syn-
thesized from both quasi-steady state and time-evolving coronal
simulations constrained by the same magnetogram also show no
significant differences. Besides, we illustrate the simulated mag-
netic field lines with orange lines on these selected meridians.
It demonstrates that the close-field regions are typically accom-
panied by bright structures. Additionally, interested readers can
refer to online movie 1 to see the evolution of simulated pB im-
ages observed from the COR2/Stereo-A field of view during the
82-nd and 735-th hours of the time-evolving coronal simulation.

In Fig. 3, we further present the observed white-light pB im-
ages at 3 Rs, these images are synthesized from observations dur-
ing CRs 2219 (a) and 2210 (b) and displayed in the Carring-
ton co-rotating coordinate system. Overlaid on these pB con-
tours are magnetic field neutral lines (MNLs) denoted by yel-
low solid, yellow dashed, and black solid lines, representing the
simulated results calculated by quasi-steady state COCONUT
coronal model, PF solver, and time-evolving COCONUT coro-
nal model, respectively. It can be seen that the MNLs calculated
in quasi-steady state and time-evolving simulations constrained
by the same magnetogram almost coincide with each other. The
segments of these MNLs between 240◦ and 20◦ in longitude
capture the observed bright structures extending more than 15◦

poleward, which are missed in the MNLs calculated by the PF
solver. However, between 20◦ and 240◦ in longitude, the seg-
ments of these MNLs calculated by MHD models are about 10◦

northern than those calculated by PF solver and the central axis
of these observed bright structures. These discrepancies may be
attributed to the fact that certain mechanisms, such as coronal
heating and solar acceleration, which can affect magnetic pres-
sure and ultimately impact the distribution of MNLs, are only
empirically rather than self-consistently formulated in this MHD
coronal model.

In Fig. 4 and Fig. 5, we demonstrate distributions of radial
velocity and the proton number density, with the latter scaled
by multiplying the dimensionless heliocentric distance. These
contours range from 1 to 20 Rs on the same meridians and mo-
ments as in Fig. 2 and overlaid on these contours are magnetic
field lines denoted by black lines. The results in the top (a, b)
and bottom (c, d) panels are calculated by quasi-steady state
and time-evolving coronal models, respectively. It is obvious
that the high-density low-speed flows are dominated by close-
field structures in low-latitude regions, while the low-density
high-speed flows occupy the high-latitude regions, accompa-
nied by open-field structures. It is a key characteristic of solar
minima. Additionally, minor differences in the magnetic field
lines within the closed-field regions can be observed between the
quasi-steady state and time-evolving coronal simulations. Also,
in the left hemisphere of these selected meridians, regions of

low speed less than 50
(

Km S−1
)

and scaled high density larger

than 5 × 106
(

cm−3
)

are slightly narrower in the time-evolving

simulation compared to the quasi-steady state coronal simula-
tions. These differences may be attributed to the electric field
caused by temporal variations in the magnetic field near the in-
ner boundary in the time-evolving coronal simulation. Also, it
can be seen that after a CR period of physical time, there are
significant differences in the simulated close-field lines in both
quasi-steady state and time-evolving simulations. These differ-
ences are a consequence of changes in magnetograms, which
serve as inner-boundary conditions, in different moments. Addi-
tionally, interested readers can refer to online movie 2 to see the
evolution of some simulated magnetic field lines in 3D illustra-
tion observed in the HCI coordinate system during the 82-nd and
735-th hours of the time-evolving coronal simulation. The con-
tinuous formation and disappearance of closed field lines, which
cannot be observed in quasi-steady state coronal simulations, is
evident during the time-evolving procedure.

In Fig. 6, we present the distribution of radial velocity at 3
(a, b) and 20 Rs (e, f) calculated at the 82-nd (a, e) and 735-th
(b, f) hours of the time-evolving coronal simulation. In Fig. 7
and Fig. 8, we show the distribution of the proton number den-
sity and plasma temperature on these places and moments as
those in Fig. 6. We also display the distribution of relative dif-

ferences in radial velocity, RDVr
= 2

VTE
r −V

QSS
r

VTE
r +V

QSS
r

, plasma density,

RDρ = 2
ρTE−ρQSS

ρTE+ρQSS , and plasma temperature, RDT = 2 TTE−TQSS

TTE+TQSS , be-

tween quasi-steady state and time-evolving coronal simulations,
denoted by superscripts “QSS" and “TE", respectively, at 3 (c, d)
and 20 Rs (g, h). Overlaid on these contours are MNLs, denoted
by black solid lines for the time-evolving coronal model, white
dashed lines for the quasi-steady state coronal model, and white
solid lines for the PF solver. It can be seen that the MNLs cal-
culated by MHD models extend more poleward than those cal-
culated by the PF solver. The high-density, low-speed flows pri-
marily span around the MNLs, the distribution pattern of plasma
temperature is basically consistent with the distribution pattern
of radial velocity, and there are significant differences in the ’U’-
shaped segments of the MNLs calculated by the quasi-steady
state and time-evolving coronal models at 20 Rs. Moreover, the
largest relative differences in radial velocity, plasma density, and
temperature are mainly concentrated around the MNLs. Addi-
tionally, the relative differences in these variables calculated by
quasi-steady state and time-evolving models at 20 Rs are larger
than those at 3 Rs, but they still remain less than 5% in radial
velocity, less than 10% in plasma density and less than 8% in
plasma density in most regions at 20 Rs.
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Fig. 2. White-light pB images observed from COR2/STEREO-A on July 2, 2019 (a) and July 30, 2019 (b), corresponding pB images synthesized
from quasi-steady state coronal simulation results (c, d) constrained by magnetograms at 19:00 on July 2, 2019 (c) and 00:00 on July 30, 2019 (d),
and the corresponding pB images synthesized from simulation results at 82 (e) and 735 (f) hours of the time-evolving coronal simulations. These
synthesized images range from 2.5 to 15 Rs on the meridian planes perpendicular to the STEREO-A line of sight, with the orange lines indicating
magnetic field lines on these selected meridians. The evolution of simulated pB images during this time interval is demonstrated in online movie
1.

Table 1. Average relative differences in simulation results calculated by quasi-steady state and time-evolving coronal model.

Parameters RDt
ave,ρ RDt

ave,|v| RDt
ave,|B|

t=82 hrs 0.54% 1.06% 4.24%
t=735 hrs 0.50% 1.28% 3.67%
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Fig. 3. Synoptic maps of white-light pB observations from SOHO/LASCO C2 at 3 Rs for CRs 2219 (a) and 2220 (b). The yellow solid and yellow
dashed lines denote the MNLs calculated by the quasi-steady state coronal model and the PF solver constrained by magnetograms at 19:00 on July
2, 2019 (left) and 00:00 on July 30, 2019(right), and the black solid lines represent the MNLs calculated at the 82-nd (left) and 735-th (right) hours
of the time-evolving coronal simulation.

Also, we calculated the average relative differences in
plasma density RDt

ave,ρ, velocity RDt
ave,|v| and magnetic field

RDt
ave,|B| between the simulation results calculated by quasi-

steady state and time-evolving coronal simulations. Here
RDt

ave,ρ, RDt
ave,|v| and RDt

ave,|B| are defined as below,

RDt
ave,ρ =

N
∑

i=1

∣

∣

∣ρt
i,QSS
− ρt

i,TE

∣

∣

∣

0.5
N
∑

i=1

(

ρt
i,QSS
+ ρt

i,TE

)

,

RDt
ave,|v| =

N
∑

i=1

∣

∣

∣vt
i,QSS
− vt

i,TE

∣

∣

∣

0.5
N
∑

i=1

∣

∣

∣

∣

vt
i,QSS
+ vt

i,TE

∣

∣

∣

∣

,

RDt
ave,|B| =

N
∑

i=1

∣

∣

∣Bt
i,QSS
− Bt

i,TE

∣

∣

∣

0.5
N
∑

i=1

∣

∣

∣

∣

Bt
i,QSS
+ Bt

i,TE

∣

∣

∣

∣

.

The superscript “t" denotes the corresponding variable calcu-
lated at the moment t during the time-evolving simulation, the
subscript “i,QSS or TE" denotes the corresponding variable in cell
i calculated by the quasi-steady state and time-evolving coronal
models, and N is the number of cells in the computational do-
main. It can be seen that the overall differences between the sim-
ulation plasma densities and velocities calculated by the quasi-
steady state and time-evolving coronal models are very small,
less than 1.5%, and the average relative difference in magnetic
field strength is also less than 4.5%.

In Fig. 9, we display some timing diagrams of radial velocity,
proton number density, and magnetic field strength during the
82-nd and 735-th hours of the time-evolving coronal simulation.
These timing diagrams are denoted by black solid lines and these
parameters are observed by a virtual satellite placed at (r, θ, φ) =
(3 Rs, 0, 201◦) and (r, θ, φ) = (20 Rs, 0, 201◦), which located in
the HDLS region. Additionally, we map the heliolongitude in
quasi-steady state coronal simulations to a Carrington rotation
period of physical time as below,

t =

{

82 − 653
φ−φ0

360◦ , if φ ≤ φ0

735 − 653
φ−φ0

360◦ , if φ > φ0

,

where φ0 = 201◦. The selected variables calculated by the quasi-
steady coronal models, constrained by magnetograms at 19:00
on July 2, 2019 and 00:00 on July 30, 2019, along the mapped
time at (r, θ) = (3 Rs, 0) and (r, θ) = (20 Rs, 0) are shown by
dashed and dash-dot lines, respectively. It demonstrates that the
peaks and troughs in the profiles of these timing diagrams in the
time-evolving simulation are obviously different from those in
the quasi-steady state coronal simulations. The radial velocity
and plasma density in the time-evolving coronal simulation are
usually between those calculated by the two quasi-steady state
coronal simulations. Additionally, the troughs in the timing dia-
grams of magnetic field strength occur earlier than those calcu-
lated by the quasi-steady state coronal model.

Similar to the comparison made in Fig. 10, we further com-
pare the timing diagrams of these selected variables in the LDHS
region calculated by both quasi-steady state and time-evolving
coronal models in Fig. 10. It demonstrates that the differences
between these selected variables calculated by the quasi-steady
state and time-evolving coronal models are much more obvious
in the LDHS regions compared to the HDLS regions. It can be
seen that the peaks and troughs in the profiles of these timing
diagrams at 3 Rs occur at almost the same moments as those
at 20 Rs for both the time-evolving and quasi-steady state sim-
ulations. However, the peaks and troughs occurring around the
160-th, 220-th, 320-th, and 660-th hours in the profiles calcu-
lated by the time-evolving coronal model are not observed in the
quasi-steady state simulations.

4.2. The impact of time-step sizes on simulation results

In this subsection, we evaluate the impact of time-step sizes on
the time-evolving coronal simulation results. We perform a time-
evolving coronal simulation with a constant time-step size of 2
minutes and compare the simulated plasma density, velocity, and
magnetic field strength with those from the time-evolving coro-
nal simulation with a time-step size of 10 minutes mentioned
above. Also, we provide some movies to show the temporal evo-
lution of the differences in some of these variables between the
two time-evolving coronal simulations with different time-step
sizes.

In the time-evolving coronal simulation with a time-step size
of 10 minutes, approximately 7 to 9 Newtonian iterations, as de-
scribed in Subsection. (3.1), are typically performed in each time
step. However, there are a few time steps where the L2 norm
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Fig. 4. Magnetic field lines from 1 to 20 Rs overlaid on contours of the radial plasma speeds Vr

(

Km S−1
)

on the meridian planes perpendicular to

the STEREO-A line of sight. The top panel denotes quasi-steady state simulation results constrained by magnetograms at 19:00 on July 2, 2019
(a) and 00:00 on July 30, 2019(b), the bottom panel represents simulation results at the 82-nd (c) and 735-th (d) hours of the time-evolving coronal
simulation. Evolution of some selected magnetic field in 3D dimension during this time interval is illustrated in online movie 2.

of the differences between the state variables updated in two
consecutive Newton iterations fluctuates around a value larger
than the threshold used to stop the Newtonian iterations. In such
cases, we terminate the Newton iterations at the 10-th iteration.
In the time-evolving simulation with a time-step size of 2 min-
utes, approximately 5 to 6 Newtonian iterations are typically per-
formed in each time step, and the computational time is about
2.23 times as this in the time-evolving simulation with a time-
step size of 10 minutes.

In Fig. 11, we present the distributions of the relative differ-
ences in plasma density (a, b) and absolute differences in radial
velocity (c, d) between the results calculated with time-step sizes
of 2 and 10 minutes, ranging from 1 to 20 Rs on the same merid-
ians and moments as in Fig. 2. It demonstrates that the relative
differences in plasma density are less than 0.2% and the absolute
differences in radial velocity are less than 0.5 Km S−1 in most
regions. Overlaid on these contours are magnetic field lines de-
noted by black lines. It can be found that the largest absolute
differences in radial velocity mainly occur in open-field regions,
while the largest relative differences in plasma density occur in
both open- and close-field regions.

In Fig. 12, we show the relative differences in plasma den-
sity (a, b, e, f) and radial velocity (c, d, g, h) between the results
calculated with time-step sizes of 2 and 10 minutes at 3 (a, b, c,
d) and 20 Rs (e, f, g, h). Overlaid on these contours are MNLs
calculated from these two time-evolving simulations. It can be
seen that the MNLs calculated with a time-step size of 10 and
2 minutes, denoted by orange dashed and black solid lines re-
spectively, are coincided with each other at both 3 and 20 Rs.
Additionally, the relative differences in plasma density and ra-
dial velocity are less than 0.2% and 0.1%, which are extremely
small, in most regions. Besides, it can be found the largest rela-
tive differences mainly distributed around the MNLs. Addition-
ally, interested readers can refer to the online movies 3 and 4
to see the evolution of MNLs overlaid on relative differences
in magnetic field strength at 3 and 20 Rs, respectively. These
movies demonstrate that the relative differences in magnetic field
strength are less than 3% and 6% in most regions at 3 and 20 Rs

during the time-evolving simulations, and the largest relative dif-
ferences mainly distribute around the MNLs.

In Fig. 13, we illustrate the timing diagrams of radial veloc-
ity, proton number density, and magnetic field strength within the
HDLS flow region, calculated with a time-step size of 10 (black
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Fig. 5. Magnetic field lines from 1 to 20 Rs overlaid on contours of the proton number density N
(

cm−3
)

, multiplied by the dimensionless

heliocentric distance
(

r
Rs

)2
, on the same meridian planes as in Fig. 4.

solid lines) and 2 minutes (orange dashed lines). It demonstrates
that these variables calculated with time-step sizes of 10 minutes
and 2 minutes are generally the same during the time-evolving
simulations, except for some minor differences in magnetic field
strength at 20 Rs between 440 and 470 hours and between 490
and 620 hours.

In Fig. 14, we further demonstrate the timing diagrams of
these selected variables within the LDHS flow region, calcu-
lated with a time-step size of 10 (black solid lines) and 2 min-
utes (orange dashed lines). It can be seen that the radial veloc-
ity and proton number density calculated with time-step sizes
of 10 minutes and 2 minutes are still generally the same during
the time-evolving simulations at both 3 and 20 Rs. The mag-
netic field strength calculated with time-step sizes of 10 minutes
and 2 minutes is essentially the same at 3 Rs during the time-
evolving simulations. However, the magnetic field strength at 20
Rs calculated with a time-step size of 2 minutes exhibits fluc-
tuations around the value obtained with a time-step size of 10
minutes during these two time-evolving simulations. This fluc-
tuation may be attributed to the impact of the additional magne-
tograms interpolated with a time-step size of 2 minutes, which
do not appear in the simulation with the larger time-step size
of 10 minutes. Although there is a fluctuation in magnetic field

strength at 20 Rs calculated with a smaller time-step size com-
pared to a larger time-step size, the magnitude of this fluctua-
tion is less than 5% relative to the corresponding magnetic field
strength and it hardly affects the other simulated state variables.

Additionally, in Table 2, we list the average relative dif-
ferences in plasma density RDt

ave,ρ, velocity RDt
ave,|v| and mag-

netic field RDt
ave,|B| between the simulation results calculated

with time-step sizes of 2 and 10 minutes, and the wall-clock
time required in both time-evolving coronal simulations. RDt

ave,ρ,

RDt
ave,|v| and RDt

ave,|B| are defined as below,

RDt
ave,ρ =

N
∑

i=1

∣

∣

∣ρt
i,dt=2 min

− ρt
i,dt=10 min

∣

∣

∣

0.5
N
∑

i=1

(

ρt
i,dt=2 min

+ ρt
i,dt=10 min

)

,

RDt
ave,|v| =

N
∑

i=1

∣

∣

∣vt
i,dt=2 min

− vt
i,dt=10 min

∣

∣

∣

0.5
N
∑

i=1

∣

∣

∣

∣
vt

i,dt=2 min
+ vt

i,dt=10 min

∣

∣

∣

∣

,
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Fig. 6. Synoptic maps of the radial plasma speeds Vr in unit of Km S−1 (a, b, e, f) calculated by the time-evolving coronal model, and the relative
differences in plasma velocity between quasi-steady state and time-evolving coronal simulations (c, d, g, h) at 3 Rs (a, b, c, d) and 20 Rs (e, f, g, h).
The left and right panels represent simulation results at the 82-nd and 735-th hours of time evolving coronal simulation, or corresponding to the
quasi-steady state coronal simulation results constrained by magnetograms at 19:00 on July 2, 2019, and 00:00 on July 30, 2019. The black solid
lines denote the MNLs calculated by the time-evolving coronal model, and the white dashed and white solid lines represent the MNLs calculated
by the quasi-steady state coronal model and the PF solver.

RDt
ave,|B| =

N
∑

i=1

∣

∣

∣Bt
i,dt=2 min

− Bt
i,dt=10 min

∣

∣

∣

0.5
N
∑

i=1

∣

∣

∣

∣

Bt
i,dt=2 min

+ Bt
i,dt=10 min

∣

∣

∣

∣

.

Here the superscript “t" denotes the corresponding variable cal-
culated at the moment t during the time-evolving simulation, the
subscript “i,dt=χ" denotes the corresponding variable in cell i cal-
culated by the time-evolving coronal model with a time-step size
of dt = χ, and N is the number of cells in the computational do-

main. It can be seen that the overall differences between the sim-
ulation results calculated with dt = 10 min and dt = 2 min are
very small, less than 1%, whereas the computational time with
dt = 2 min is almost 2.23 times as long as that with dt = 10 min.
It demonstrates that the computational efficiency of the implicit
time-evolving coronal model can be improved by increasing the
time-step size, while still maintaining the required temporal ac-
curacy.
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Fig. 7. Synoptic maps of the proton number density N in units of 105 cm−3 (a, b) and 103 cm−3 (e, f) calculated by the time-evolving coronal
model, and the relative differences in proton number density between quasi-steady state and time-evolving coronal simulations (c, d, g, h). The
locations, moments and lines in these panels are the same as those in Fig. 6.

Table 2. Comparison of time-evolving coronal simulations with dt = 10 and 2 minutes, for 2 Carrington Rotations of physical time.

wall-clock time (hrs) RD82 hrs
ave,ρ & RD735 hrs

ave,ρ RD82 hrs
ave,|v| & RD735 hrs

ave,|v| RD82 hrs
ave,|B| & RD735 hrs

ave,|B|

39.06 & 17.54 for dt=2 & 10 min 0.09% & 0.08% 0.10% & 0.09% 0.60% & 0.42%

5. Concluding remarks

Steady-state coronal models are constrained by a time-invariant
magnetogram and aim to achieve a steady-state coronal struc-
ture. Time-dependent coronal models must be time-accurate to
capture dynamic features of the corona, such as the propaga-
tion of CMEs. Time-evolving coronal models, which are both

time-accurate and driven by more realistic time-evolving mag-
netograms, can capture the time-evolving features of the corona
with higher fidelity.

In this paper, we extend the recently developed time-
dependent COCONUT coronal model to a time-evolving coro-
nal model. It is the first fully implicit time-evolving MHD coro-
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Fig. 8. Synoptic maps of the plasma temperature T in unit of 105 K (a, b, e, f) and the relative differences in plasma temperature between quasi-
steady state and time-evolving coronal simulations (c, d, g, h). The locations, moments, and lines in these panels are the same as those in Fig. 6.

nal model. The main advantage of this time-evolving coronal
model is its flexibility in selecting time-step sizes without be-
ing entirely constrained by the Courant-Friedrichs-Lewy (CFL)
stability restriction. This feature allows us to enhance compu-
tational efficiency by increasing the time-step sizes during the
time-evolving coronal simulation. Also, we design an HLL Rie-
mann solver with a self-adjustable dissipation term, which re-
duces the dissipation term by half for low-speed flows and re-
verts to the original one for high-speed flows. It makes the solver
perform well in solving both incompressible low-speed and com-
pressible high-speed flows and improves the numerical stabil-
ity of our coronal model in these simulations. Additionally, dur-
ing the time-evolving coronal simulations, we appropriately ad-

justed the plasma density to avoid the abnormally large Alfvénic
speed in the computational domain. It enhances the PP property
of this COCONUT coronal model.

We use a series of hourly updated GONG-zqs magnetograms
to drive this time-evolving coronal model, mimicking the evo-
lution of dynamic coronal structures from the solar surface to
0.1 AU during two CRs around the 2019 eclipse in an iner-
tial coordinate system. This time-evolving coronal model suc-
cessfully reproduces some observed coronal structures, such as
those seen in pB images. We also compare the results in the
time-evolving coronal simulation driven by time-evolving mag-
netograms with the quasi-steady state coronal simulations con-
strained by a time-invariant magnetogram. This comparison val-
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idates the time-evolving coronal model with a large time-step
size. It demonstrates that the time-evolving coronal model with a
time-step size of 10 minutes can generate coronal structures sim-
ilar to those calculated by the quasi-steady state coronal model
at the moment when their inner boundaries are configured by the
same magnetogram. The average relative differences in plasma
density, velocity, and magnetic field strength between the time-
evolving and quasi-steady state coronal simulations, when con-
figured with the same magnetogram at the inner boundary, are
less than 0.6%, 1.3% and 4.3%, respectively. It also shows that
the timing diagrams of the state variables simulated by the time-
evolving coronal model are obviously different from those de-
rived from the quasi-steady state coronal simulations by assum-
ing the coronal structures remain unchanged during a CR period.
Consequently, we can conclude that during solar minimum, each
time step of the time-evolving coronal simulation with a large
time step of 10 minutes produces results comparable to those
of the steady-state coronal simulation constrained by the same
magnetogram, which typically requires thousands of iterations.
Additionally, throughout the entire time-evolving coronal simu-
lation, the time-evolving coronal model with a large time step
can also capture the temporal evolution of the state variable,
which can’t be done in the quasi-steady state coronal simula-
tions.

Furthermore, we compare the time-evolving simulation re-
sults calculated with a time-step size of 10 and 2 minutes to
evaluate the effect of time steps on the simulation results. The
comparison demonstrates that the relative differences in the state
variables calculated with a time-step size of 10 and 2 minutes are
very small. The average relative differences in plasma density,
velocity, and magnetic field strength between the simulations
with different time-step sizes are no more than 0.09%, 0.10%,
and 0.60%, respectively. However, the computational time with
a time-step size of 10 minutes is no more than half of that re-
quired for simulation with a time-step size of 2 minutes. We can
conclude that the computational efficiency of the fully implicit
time-evolving coronal model can be significantly improved by
increasing the time-step size, while still maintaining the required
temporal accuracy.

Considering that the computational time of 1281 hours of
physical time is no more than 18 hours when adopting a time-
step size of dt = 10 min, it is practical to adopt a smaller dt
to obtain more accurate simulation results for high-frequency
events such as CMEs, at the expense of an acceptable reduc-
tion in computation efficiency. In fact, we can adjust the phys-
ical time-step size according to the temporal accuracy required
for our specific research or practical application, thereby further
optimizing time-step sizes to simultaneously maintain high effi-
ciency and the necessary numerical stability and accuracy.

Although this established fully implicit time-evolving MHD
solar coronal model is merited in many aspects and acts as
a promising tool to timely and accurately simulate the time-
evolving corona in practical space weather forecasting, there is
still some room for further improvement. In our future work,
we will try to couple this highly efficient time-evolving coro-
nal model with an inner heliosphere model such as EUHFORIA
to further validate its ability to improve the performance of the
current Sun-to-Earth model chain in providing timely and accu-
rate space weather forecasting. Additionally, we will attempt to
use some surface flux transport models such as the Advective
Flux Transport (AFT) model (Upton & Hathaway 2014) to ad-
vect the radial magnetic field with observed flows. This may help
us produce a more realistic magnetic field evolution at the inner
boundary of our coronal model. Furthermore, we may also try

to incorporate additional observations into the inner boundary
conditions, such as inferring horizontal velocities from obser-
vational data using the time-distance helioseismology method.
(Yalim et al. 2017; Zhao et al. 2012). Besides, further decreas-
ing the magnetic field discretization error by solving decom-
posed MHD equations (e.g., Feng et al. 2010; Li et al. 2018;
Wang et al. 2019a) may stabilize COCONUT numerically even
when dealing with extremely low-β problems.
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Brchnelova, M., Kuźma, B., Perri, B., Lani, A., & Poedts, S. 2022, ApJS, 263,

18
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Fig. 9. Timing diagram of simulated radial velocity Vr in unit of Km S−1 (a, b), proton number density in units of 105 cm−3 (c) and 103 cm−3

(d), and magnetic field strength in unit of Gauss (e, f) observed by two virtual satellites located at HDLS regions. Observation points (r, θ, φ) =
(3 Rs, 0, 201◦) and (r, θ, φ) = (20 Rs, 0, 201◦) in HCI coordinate system are selected for the time-evolving coronal simulation denoted by solid lines
during the time interval between 82 and 735 hours. For the quasi-steady state coronal simulations constrained by magnetograms at the beginning
(denoted by dashed lines) and end (denoted by dash-dot lines) of this time interval, the heliolongitude is mapped to a Carrington rotation period
corresponding to the time series on the horizontal axis of these timing diagrams.
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Fig. 10. The same as in Fig. 9, but with these virtual satellites located at LDHS regions, and observation points (r, θ, φ) = (3 Rs,−70◦, 201◦) and
(r, θ, φ) = (20 Rs,−70◦, 201◦) in the HCI coordinate system selected for the time-evolving coronal simulation.
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Fig. 11. Magnetic field lines from 1 to 20 Rs overlaid on contours of the relative differences in plasma density (a, b) and absolute differences in
radial velocity in unite of Km S−1 (c, d), between the results calculated with time-step sizes of 2 and 10 minutes, on the same meridian planes as
in Fig. 4.
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Fig. 12. Synoptic maps of the relative differences in plasma density (a, b, e, f) and radial velocity (c, d, g, h) between the results calculated with
time-step sizes of 2 and 10 minutes. The black solid and orange dashed lines denote the MNLs calculated by the time-evolving coronal model
with time-step sizes of 2 and 10 minutes, respectively. The locations and moments in these panels are the same as those in Fig. 6. The evolution
of the relative differences in magnetic field strength at 3 and 20 Rs during the 82-nd and 735-th hours of the time-evolving coronal simulations is
demonstrated in the online movies 3 and 4, respectively.
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Fig. 13. Timing diagrams of simulated radial velocity Vr in unit of Km S−1 (a, b), proton number density in units of 105 cm−3 (c) and 103 cm−3 (d),
and magnetic field strength in unit of Gauss (e, f) observed by two virtual satellites located at HDLS regions. The black solid and orange dashed
lines denote the variables calculated by the time-evolving coronal model with time-step sizes of 2 and 10 minutes, respectively. The location of
these two observation points are the same as those in Fig. 9.
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Fig. 14. The same as in Fig. 13, but with these observation points selected within the LDHS flow regions as in Fig. 10.
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